ADVERTISEMENT

Coupled 3D Simulator Models Wastewater-Injection-Induced Seismicity

This paper presents a coupled 3D fluid-flow and geomechanics simulator developed to model induced seismicity resulting from wastewater injection. The simulator modeled several cases of induced earthquakes with the hope of providing a better understanding of such earthquakes and their dominant causal factors, along with primary mitigation controls. Implementation of rate-and-state friction to model friction weakening and strengthening during fault slip to accurately model earthquake occurrence, and an embedded discrete fracture model to efficiently model fluid flow inside the fault, are among the essential features of the simulator. The complete paper presents results from a combined model that brings together injection physics, reservoir dynamics, and fault physics to explain better the primary controls on induced seismicity.

Introduction

Since 2009, a substantial increase in the number of earthquakes in the central and eastern United States has occurred. Oklahoma has been one of the most affected regions, with several earthquakes of M 5+, including the Prague earthquake in 2011 and the Pawnee earthquake in 2016. This has prompted efforts to find and understand any correlation between oil and gas activity—mainly wastewater disposal—and the occurrence of the earthquakes. Induced or triggered seismicity associated with wastewater injection, mining, oil and gas extraction, and geothermal operations has been identified since the earthquakes at the Rocky Mountain Arsenal in 1960s. Fluid injection into subsurface formations can increase pore pressure, reduce the effective stress, and induce slip on faults. Laboratory studies show that the sliding displacement may enhance fracture transmissivity and create a hydraulic pathway through the formation. In an unconventional reservoir, the enhancement could lead to improved hydrocarbon production by using the slipped natural fractures. But in some formations, such as water-disposal aquifers, seismicity might be induced when faults are activated within the igneous basement.

Seismicity induced by fluid injection is controlled by several groups of parameters (injection, reservoir, and frictional). A fundamental understanding of which factors are the most important in triggering slip in areas of active wastewater injection and disposal has been hampered by interrelationships between the various parameters, leading to suggestions of injection volume, rate, or pressure being the most important. However, necessary reservoir characteristics, such as size and permeability, are not well characterized at the well or in the subsurface, and remain the main challenge for deterministic models. Additionally, rupture nucleation on faults near a region of injection depends on rate-and-state and related physics.

This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 191670, “Wastewater Injection and Slip Triggering: Results From a 3D Coupled Reservoir/Rate-and-State Model,” by Mohsen Babazadeh, SPE, and Jon Olson, SPE, The University of Texas at Austin, prepared for the 2018 SPE Annual Technical Conference and Exhibition, Dallas, 24–26 September. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Coupled 3D Simulator Models Wastewater-Injection-Induced Seismicity

01 December 2019

Volume: 71 | Issue: 12

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT