ADVERTISEMENT

Intervention Work Flow Improves Injection Coverage in Tight Carbonate Reservoirs

The complete paper discusses an advanced matrix-stimulation work flow that brings reliability and flexibility to the acidizing of tight carbonate water injectors and has delivered injectivity improvements tight carbonate onshore reservoirs in the Middle East. The work flow leverages real-time downhole measurements and the presence of fiber optics in coiled tubing (CT) for telemetry, and relies on a high-pressure jetting tool, controlled with the help of real-time downhole pressure data, to enhance penetration of acid into the targeted intervals.

Introduction

Effective and long-term matrix stimulation of water-injector wells completed across tight carbonate reservoirs presents a significant challenge in the Middle East. Local practices for matrix stimulation of openhole horizontal carbonate water injectors consist of spotting hydrochloric acid treatment by CT along the uncased well section, using a specific fluid dosage per unit length of the pay zone. Thus far, that approach has delivered inconsistent results in wells completed across tight carbonate rock, most often leading to a rapid decline in injection rates following the treatment.

An alternative work flow leverages distributed temperature sensing (DTS) to evaluate the original water-injection coverage across the reservoir. Each section benefits from a customized treatment that increases injectivity and improves uniformity of injection. A high-pressure jetting tool, controlled with the help of real-time downhole pressure data, is key to this work flow because it enhances penetration of acid into the targeted intervals. The engineered work flow has delivered injectivity improvements of nearly 8,000 B/D in the intervened wells, with the DTS survey confirming significant gains in injection coverage along the openhole section.

The complete paper is organized into three sections—matrix stimulation challenges, proposed solution, and case studies.

This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 199290, “Advanced Intervention Work Flow Brings High-Pressure Jetting to New Heights of Effectiveness and Enables Unprecedented Injection Coverage in Tight Carbonate Reservoirs,” by Samy Mohamed Abdelrehim, Daniel Gutierrez, and Sameer Punnapala, SPE, ADNOC, et al., prepared for the 2020 SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, 19–21 February. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Intervention Work Flow Improves Injection Coverage in Tight Carbonate Reservoirs

01 June 2020

Volume: 72 | Issue: 6

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT