ADVERTISEMENT

Integrated Work Flow Optimizes Eagle Ford Field Development

An integrated project can take many forms, depending on available data, from a simple horizontally isotropic model with estimated hydraulic fracture geometries used for simple approximations to a large-scale seismic-to-simulation work flow. The complete paper presents a large-scale work flow designed to take a vast amount of data into consideration. The work flow can be scaled for projects of any size, depending on the data available.

Introduction

In 2017, Chesapeake Energy launched an investigation to evaluate ways of improving overall recoveries within the lower Eagle Ford. Two theoretical approaches were generated to optimize the company’s development plan: modification to current completion designs to achieve greater near-well fracture complexity and modification of targeting strategies to more-effectively drain the Eagle Ford interval.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 195951, “Case Study: Optimizing Eagle Ford Field Development Through a Fully Integrated Work Flow,” by Adrian Morales, SPE, Robert Holman, and Drew Nugent, Chesapeake Energy, et al., prepared for the 2019 SPE Annual Technical Conference and Exhibition, Calgary, 30 September–2 October. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Integrated Work Flow Optimizes Eagle Ford Field Development

01 July 2020

Volume: 72 | Issue: 7

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT