Mature fields

Cased-Hole Solution Assesses Tight Reservoirs

The complete paper presents a solution that assesses tight matrices and natural fractures at a level not previously achieved. At the tight-matrix level, advanced nuclear spectroscopy is carried out with a new pulsed-neutron device that achieves simultaneous time- and energy-domain measurements.

jpt-2020-08-197423f1-hero.jpg

The complete paper presents a solution that assesses tight matrices and natural fractures at a level not previously achieved. At the tight-matrix level, advanced nuclear spectroscopy is carried out with a new pulsed-neutron device that achieves simultaneous time- and energy-domain measurements. A new resistivity- and salinity-independent methodology is presented for obtaining gas saturation by a measurement known as fast neutron cross section (FNXS), oil saturation from the total-organic-carbon log, mineral volumes solved from formation elemental concentrations from the energy domain, and porosity from the hydrogen index obtained from the spectroscopy time domain.

Reservoir Challenges

The reservoirs under analysis belong to the Colombian Pauto Complex field (Fig. 1). Wells drilled in the area have confirmed a staked structure architecture, in which three main thrust sheets can be differentiated: Miche, Guamalera, and Pauto Main. The present study was focused on the Mirador formation of the Pauto Complex, which can be described as a fluvial and shallow marine environment deposit system.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.