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system vulnerabilities, develop accident scenarios, and assess the 
safety level in facilities. Through an FTA, one postulates that the 
system itself has failed in a certain way that will be considered as 
a top event. The occurrence of the top event is further described in 
terms of the occurrence or nonoccurrence of other intermediate/
basic events. Some mathematical methods, such as Boolean al-
gebra, rare-event approximation, and set theory, are then used to 
estimate the probability of the top event (i.e., system failure) as a 
function of intermediate/basic events (i.e., component/subsystem 
failures) (Bauer et al. 2009; Bedford and Cooke 2001; Vesely et al. 
1981). Failure probability of a basic event can be estimated by ana-
lyzing the life data that can be available from operational or field 
experiences, maintenance reports, reliability tests, historical data, 
and handbooks.

Because the oil and gas industry has less experience in Arctic re-
gions compared with normal-climate regions, adequate life data may 
be sparse. Available data from normal-climate regions may not be 
suitable for reliability analysis of Arctic oil and gas facilities because 
of the considerable differences in operating conditions. The harsh 
operating environment in the Arctic is commonly described as ex-
tremely low temperatures, winds, snowdrifts, polar low pressures, at-
mospheric and sea-spray icing, sea-ice-induced vibrations, seasonal 
darkness, and poor visibility resulting from fog and snowstorms. Be-
cause the reliability performance of Arctic oil and gas facilities is 
adversely affected by such an environment (Barabadi et al. 2013; Na-
seri and Barabady 2013), the corresponding reliability assessments 
must be performed in accordance with the adverse effects of harsh 
operating conditions on the equipment and operation performance.

Proportional hazard models (Barabadi and Markeset 2011; Gao 
et al. 2010) and accelerated life models (Barabadi 2014) are ap-
plied to include the effects of Arctic operating conditions on com-
ponent-reliability performance. However, such models rely on an 
extensive range of detailed data that may not be available, particu-
larly in the Arctic regions. Thus, the expert-judgement process can 
be applied as an alternative method to cope with this shortcoming 
and account for such effects. Expert judgements represent the ex-
perts’ state of knowledge regarding a technical question at the time 
of response. Such judgements are expressions of opinion that are 
based on knowledge and experience. Expert judgment is not re-
stricted to the experts’ answer, but includes the experts’ mental pro-
cesses of assumptions, definitions, and algorithms, through which 
the answers are formulated (Ortiz et al. 1991). The concept of expert 
judgement has been applied in a variety of fields, including nuclear 
engineering, meteorological research, aerospace, seismic and envi-
ronmental risk, and risk and safety analysis of oil and gas operations 
(Clemen and Winkler 1999; Moon and Kang 1999; Purba 2014). In 
most of these studies, experts are mainly asked to provide a qualita-
tive idea about the frequency of occurrence of an event. Such quali-
tative words are then converted to fuzzy linguistic variables and, 
consequently, to fuzzy numbers for further quantitative assessments.

In this study, a methodology is presented for system-reliability 
assessment on the basis of fuzzy FTA, which is applicable to Arctic 
oil and gas operations. More specifically, the expert-judgement 
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Summary
Reliability analysis has various applications in oil- and gas-pro-
cessing facilities, such as identifying the bottlenecks of the system, 
quantitative risk assessments, improving system availability and 
throughput capacity, spare-parts planning, and optimizing mainte-
nance strategies. Reliability performance of a system can be de-
scribed as a function of operation time and a series of operating 
conditions. For this purpose, a range of reliability data is required, 
on the basis of which the reliability function can be modeled. One 
of the challenges in reliability analysis of Arctic oil and gas facili-
ties is lack of adequate reliability data. The available historical data 
gathered in normal-climate regions may not be appropriate because 
they do not include the effects of harsh Arctic operating conditions 
on equipment performance.

In this study, the expert-judgement process is used as a tool to 
modify the mean time to failure of the equipment to include the 
adverse impacts of Arctic climate conditions on equipment per-
formance. However, various sources of bias and uncertainties are 
involved in expert judgements. Fuzzy set theory is used to deal 
with such uncertainties and their propagation in both the compo-
nent- and system-level analyses. For this purpose, a methodology 
is presented to perform a Gaussian fuzzy fault-tree analysis for 
system-reliability assessments. This methodology is further illus-
trated by a case study.

Introduction
Reliability is defined as “the ability of an item to perform a re-
quired function under stated conditions for a stated period of time” 
(ISO 8402:1994). The term “ability” can be expressed quantita-
tively with probability, referring to the chance or likelihood that 
an item will perform its intended function. The term “stated condi-
tions” emphasizes that an item may perform its intended functions 
adequately under one set of conditions (operational environment) 
and quite poorly under another set (Stapelberg 2009). 

There are several tools, such as reliability block diagram (Gao  
et al. 2010), Markov models (Malefaki et al. 2014), fault-tree models 
(Wang et al. 2013; Yuhua and Datao 2005), and Monte Carlo sim-
ulation (Zio et al. 2007), that can be used to describe the system 
reliability mathematically as a function of the reliability perfor-
mance of its components (Bauer et al. 2009). Fault-tree analysis 
(FTA) is a deductive system analysis that has been used extensively 
in quantitative risk assessments and prediction of system-failure 
probability in various fields, such as nuclear power plants (Purba 
2014), chemical process plants (Wang et al. 2013), oil and gas in-
dustry (Yuhua and Datao 2005), and aerospace (Phillips and Diston 
2011). An FTA provides a comprehensive and structured approach 
to estimate system-failure probability, identify and understand key 
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Because the element xM (known as the mean value of �X) has a mem-
bership grade of unity, the fuzzy number �X  can be considered as the 
fuzzified form of the crisp number xM. Fuzzy numbers can be de-
scribed effectively with the important concept of the α-cut set, which 
facilitates the fuzzy arithmetic operations. The α-cut set of the fuzzy 
number �X  is defined as a crisp set of elements x, with membership 
grades being greater than or equal to some threshold � ∈( )0 1, . The 
α-cut set of �X  is mathematically expressed as X x x

X� � �= ∈ ( ) ≥ � �  
(Dubois and Prade 1980). A Gaussian fuzzy number �X  can also be 
defined using its crisp α-cut set X x x x xL R L R� � � � �= ( ) ≤, , , where xαL 
and xαR are given as x L R X� � �, = ( )−

�
1  (Hanss 2005). Figs. 1a and 1b 

show a typical Gaussian fuzzy number and its crisp α-cut set, respec-
tively. The method of determining the α-cut set of a Gaussian fuzzy 
number is given in Appendix A. 

Extension Principle and Fuzzy-Number Arithmetic. By use of 
the extension principle introduced by Zadeh (1965), the domain 
and range of an ordinary function from ordinary sets are extended 
to fuzzy sets. The extension principle provides a general method 
for extending the crisp or nonfuzzy mathematical concepts to deal 
with fuzzy numbers and fuzzy functions (Dubois and Prade 1980). 
This principle can be used when one wants to fuzzify a function or 
to include the associated uncertainties in the function parameters, 
and thus evaluate the uncertainty propagation. In this study, the ex-
tension principle is used to fuzzify the expert opinions, combine 
them, and then form the reliability or failure-probability function 
for the system and its components. 

The extension principle is defined as follows (Zadeh 1965): 
Suppose that G is an ordinary function G n:� ��  that maps an 
element (x1, x2, …, xn) to the element y = G(x1, x2, …, xn). Addi-
tionally, let � �Xi ⊆  be a fuzzy set defined by a membership func-
tion � � �

X i ii
x x i n( ) ∈ =, , , , ...,1 2 . Then, using the concept of α-cut 

set, the membership function � � �
Y

y y( ) ∈,  of fuzzy set � �Y ⊆  with 
� � � �Y G X X Xn= ( )1 2, , ...,  is defined as

Y G X X Xn� � � �= ( )1 2, , ,...,, ,

= ∈ = ( ) ∈ y y G x x x x Xn i� 1 2 1, , ..., ,, � .  ..........................(2) 

Gaussian Fuzzy Fault-Tree Analysis (FTA)—Methodology
This study proposes a methodology consisting of two phases. 
During Phase I, the system-reliability model is developed for the 
base area, where the life data are available for the system and its 
components. The operating conditions in the base area are consid-
ered normal. During Phase II, the developed model in Phase I is 

process is used to modify available life data gathered in normal-
climate regions to include the effects of Arctic operating condi-
tions on reliability performance of components and systems. Fuzzy 
set theory is used to deal with the uncertainties involved in ex-
pert judgements. For this purpose, the exact values of mean time 
to failures are combined with the subjective opinions of the ex-
perts, which are converted to Gaussian fuzzy numbers. To develop 
a model for system-reliability analysis and to analyze the corre-
sponding uncertainty propagation, a fuzzified form of FTA is de-
veloped. The proposed methodology is illustrated by a case study 
consisting of a three-phase horizontal separator and its surrounding 
valves. The remainder of this paper is organized as follows: a short 
introduction to fuzzy set theory and Gaussian fuzzy numbers is pre-
sented. The methodology for performing the Gaussian fuzzy FTA 
is then described. Conclusions are presented after illustrating the 
methodology by a case study.

Fuzzy Set Theory
In classical set theory, a set is defined as a collection of objects 
or elements out of a universal set that share common properties 
or characteristics. In that regard, an element receives a member-
ship degree of unity, if and only if that element belongs to the set; 
otherwise the membership degree will be zero (i.e., the element 
does not belong to the set). For example, considering the clas-
sical set concept, if the failure probability of a component before 
a certain time is 2%, its membership grade is unity and all other 
failure-probability values have a membership degree of zero be-
cause they are not included in the set F = {2%}. However, the clas-
sical set may reach its limit where the property that distinguishes 
the members from nonmembers is ambiguous and vague because 
of, for instance, some uncertainties. While in classical set theory, 
a sharp, crisp, and unambiguous boundary distinguishes the mem-
bers and nonmembers for any well-defined set of entities, fuzzy 
set theory accepts partial memberships. On the basis of fuzzy set 
theory, which was introduced by Zadeh (1965), it is allowed to 
have an element that at the same time belongs to a set and does not 
belong to that set. The degree at which the element belongs to the 
set is assigned by a membership function (Chen and Pham 2001; 
Dubois and Prade 1980). The higher the membership grade, the 
more the element belongs to the set. Considering the aforemen-
tioned example, to account for the uncertainties, one may also con-
sider the failure probability values of 1.88 or 2.02% as members 
of F = {2%}, but with a membership degree of less than unity, for 
instance 0.95.

Expert opinions can be formulated with the fuzzy set theory. 
The impacts of an Arctic operating environment on equipment re-
liability performance may vary based on a number of factors, in-
cluding equipment type, equipment function, equipment location on 
the platform, and the severity of the weather conditions. In this re-
gard, exact quantification of all such impacts in the form of single-
point values is not feasible. Thus, experts prefer to present their 
opinions by use of a range or quantiles of a distribution to reflect the 
uncertainties associated with their ideas. Then, fuzzy set theory can 
be used to combine the expert opinions and their associated uncer-
tainties, and finally, to present the failure probability in fuzzy form. 

Mathematically, a fuzzy number �X  is a convex normalized fuzzy 
set of the real line � , which is defined as � ��X x x x

X
= ( )  ∈{ }, ,� , 

where � �X x( ) ∈[ ]0 1,  is the membership grade of the element x in
�X . The membership function � �X x( ) is piecewise continuous, and 
there is exactly one xM ∈�, where � �A Mx( ) = 1 (Dubois and Prade 
1980). There are various types of fuzzy numbers, some of which 
are of particular interest because of the specific behavior of their 
membership functions such as triangular, trapezoidal, Gaussian, 
exponential, and quadratic. A Gaussian fuzzy number �X  over a 
universal set S is defined as a fuzzy number whose membership 
function is characterized by a normalized and, in general, asym-
metrically parameterized Gaussian function, given as (Hanss 2005)
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Fig. 1—(a) A typical Gaussian fuzzy number �X  and (b) its α-cut 
set.
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modified by expert judgements and fuzzy set theory to develop the 
system-reliability model for the target area (i.e., an Arctic region), 
where the life data are sparse or not available. The aim of this phase 
is to include the subjective opinions of experts about the poten-
tial impacts of the harsh Arctic operating environment on reliability 
performance of the system and its components. 

Phase I: System-Reliability Modeling for the Base Area. The 
aim of Phase I is to perform an FTA for the base area to estimate 
the system reliability as a function of each component’s reliability 
or failure probability. For this purpose, a set of steps must be fol-
lowed, as illustrated by Fig. 2. 

Step I-1: System Identification and Description. A system is 
defined as a “set of interrelated elements considered in a defined 
context as a whole and separated from their environment” (IEC 
60050-151, 2001). The elements of a system may also be broken 
down to subsystems and components. Internal boundaries are used 
to establish a limit of resolution and to determine in how much 
detail one should study the system. Additionally, to decide what 
factors could influence the system function, or to determine what 
aspects of the system performance are of concern, one needs to es-
tablish the external boundaries of the system in question (Bedford 
and Cooke 2001; Vesely et al. 1981).

Step I-2: Component-Level Analysis. The aim of this step is to 
develop the reliability or failure-probability function for each com-
ponent. To perform this task, a set of life data is required, to which 
a theoretical distribution is fitted. Such detailed data can be ac-
quired from handbooks, maintenance reports, reliability tests, and 
historical data. Let T be a random variable representing the time to 
failure of a component. The probability that the component fails 
before time t is called failure probability or unreliability. As per the 
probability terminology, failure probability F(t) is the same as the 
cumulative distribution function of the random variable T, which 
is given by

F t P T t f x x
t( ) = ≤( ) = ( )∫ d
0

,  ..................................................(3)

where f(x) is the probability-density function of the continuous 
random variable T, such that f x x( ) =

+∞

∫ d 1
0

 (Verma et al. 2010). 
Assuming a one-parameter exponential distribution, the proba-
bility-density function can be written as

f t t( ) = −( )� �exp ,  ..................................................................(4)

where λ is the failure rate of the component. For an exponential 
probability-density function, failure rate is constant and is defined 
as the inverse of mean time to failure (MTTF) (i.e., λ = 1/MTTF). 
Substituting Eq. 4 into Eq. 3 gives a description for component-
failure probability F(t) as

F t
t

MTTF
( ) = − −



1 exp .  ......................................................(5)

Mathematically, reliability is expressed as the probability that a 
component fails at a time greater than or equal to a specified time t 
[i.e., R(t) = P(T ≥ t) = 1 – F(t)]. In some contexts, reliability func-
tion is known as survival function. 

Step I-3: Fault-Tree Construction. A fault-tree model is 
simply described as a graphic model of the various parallel and 
sequential combinations of faults that will result in the occurrence 
of the top event. The faults can be associated with hardware fail-
ures, human errors, or any other relevant event that can lead to 
the top or an intermediate event (Vesely et al. 1981). To develop 
a fault tree, a number of symbols are generally used to describe 
events and their combinations. The primary events of a fault tree 
are those that have not been further developed. Such events can 
be categorized into basic event, undeveloped event, conditioning 

Estimate failure probability of the
components/subsystems 

Define the system and its
external boundary 

Define the components/sub-
systems and internal boundaries

Identify the functions of the system, subsystems
and components, and their interactions 

Identify the top event
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Fig. 2—Procedure for Phase I: system reliability modeling for the base area.
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event, and external event. A basic or initiating event, represented 
by a circle, requires no further development and thus signifies the 
appropriate limit of resolution. In addition to events, a fault tree 
consists of various logic gates, of which AND-gate and OR-gate 
are illustrated in Fig. 3 as two basic types of fault-tree gates. An 
AND-gate shows that the output fault occurs only if all the input 
faults occur, while an OR-gate shows that the output fault occurs 
only if at least one of the input faults occurs (Bedford and Cooke 
2001; Vesely et al. 1981).

Step I-4: Estimation of System Failure Probability. There 
are different methods to estimate the probability of the top event 
of a fault tree. The rare-event approximation uses the concept of 
Boolean algebra and its associated rules. To have a more-precise 
estimation, one can use the simplified Boolean expression of the 
fault tree to determine the possible minimal cut-sets. A minimal 
cut-set is the smallest combination of basic events, which, if they 
all occur, will result in the top-event occurrence; and if one of the 
failures in the cut set does not occur, then the top event will not 
occur by that combination (Vesely et al. 1981). Set theory and its 
associated rules can be further applied to the specified minimal cut-
set. The required formulas to estimate the probability of an OR-gate 
or AND-gate are given by (Verma et al. 2010; Vesely et al. 1981):

F A B F A B F A F Band( ) = ∩( ) = ( ) ( ) .....................................(6)

and

F A B F A B F A F A F A F Bor( ) = ∪( ) = ( ) + ( ) − ( ) ( ),  ............(7)

where F(A) and F(B) are failure probabilities of A and B, respec-
tively. One can also describe the AND- and OR-gates by use of the 
reliability terminology. 

FTA is recommended in this study because it is a powerful tool 
in complex-system analysis, especially where dependent failures or 
operational loops are present. The other advantage of constructing a 
fault tree is to determine the minimal cut-sets by applying Boolean al-
gebra concepts. Identifying the minimal cut-sets helps to understand 
and identify all possible system-failure scenarios. Once the minimal 
cut-sets are determined, one may perform the system failure or reli-
ability analysis with the reliability block-diagram concept because, in 
some cases, it may reduce the number of calculations considerably.

Phase II: System-Reliability Modeling for the Target Area. The 
aim of Phase II is to include the adverse effects of the Arctic oper-
ating environment on the system-reliability performance. For this 
purpose, the FTA performed during Phase I needs to be modified 
with the subjective opinions of experts that are aggregated with the 
concept of fuzzy set theory. A number of experts are asked to give 
their opinions on the degree of decrease in MTTF of the compo-
nents. Such opinions will be converted to Gaussian fuzzy numbers 
and will be further combined with appropriate aggregation methods 
on the basis of the extension principle. More specifically, a set of 
steps must be followed, as illustrated by Fig. 4. 

Step II-1: Expert Selection. Expert selection is the first step in 
the expert-judgment process, and refers to choosing an appropriate 
number of reliable experts. Various definitions are available for the 

term “expert.” An expert can be defined as “a person who has a 
background in the subject matter at the desired level of detail and 
who is recognized by his/her peers or those conducting the study as 
being qualified to solve the questions” (Meyer and Booker 1991). 
O’Hagan et al. (2006) state simply that “an expert may, in principle, 
just mean the person whose judgements are to be elicited.” Selec-
tion of experts is a major issue in expert-judgement studies. This is 
because the term expert is open to different interpretations because 
experts are defined by subjective expressions such as “having a 
desired level of detailed background,” “being recognized by their 
peers,” and “being qualified.” Additionally, on the one hand, it is 
advantageous to select a group of experts with wide background, 
but on the other hand, the analyst may be under pressure to exclude 
some of the experts who are perceived as being less experienced 
(Bedford and Cooke 2001). 

Step II-2: Expert-Opinion Elicitation. “Elicitation” is de-
fined as the process of obtaining the subjective opinions of ex-
perts through specifically designed methods of communication, 
such as surveys, interviews, group meetings, and questionnaires 
(Meyer and Booker 1991). Elicitation may be performed in quali-
tative or quantitative forms. In quantitative form, experts are asked 
to express their subjective opinions about a parameter in the form 
of, for instance, a single-point or distribution estimation, an abso-
lute rating, an interval scaling, and a ratio scaling (Cooke 1991; 
Svenson 1989). 

In this study, experts are asked to provide their opinions on the 
degree of decrease in MTTF of various components operating in 
the target area as a fraction of the corresponding MTTF in the base 
area. To include the uncertainty in expert judgements, experts are 
required to express their opinions in the form of 5, 50, and 95% 
quantiles (i.e., eliciting the quantiles of a distribution). Uncertain-
ties and biases are important concepts that one needs to take into 
account while performing the elicitation step. Several studies list 
three categories of biases that can be introduced to the study at 
the elicitation step, including structural biases, motivational biases, 
and cognitive biases (Benson and Nichols 1982; Meyer and Booker 
1991; Ortiz et al. 1991; Otway and Winterfeldt 1992). 

Structural biases occur when experts are influenced by the way 
in which a problem is formulated or by the level of detail in the 
study specified by the analyst. For instance, asking for quantiles of 
a distribution may lead to different judgements if the distribution 
parameters were elicited. 

Motivational biases occur when the experts may benefit from 
the results of the study, or when experts express their opinions to 
please the interviewer or analyst. For example, if the aim of a study 
is to show and quantify the differences between the equipment-reli-
ability performance in Arctic- and normal-climate regions, experts 
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Fig. 3—OR-gate and AND-gate illustration of two basic events 
A and B.

Step II-3: Fuzzification of expert opinions 

Step II-5: Developing fuzzy failure-probability 
function for components/subsystems

Step II-6: Performing fuzzy FTA to estimate the 
system-failure probability

Step II-4: Aggregation of fuzzified expert opinions

Step II-2: Expert-opinion elicitation

Step II-1: Expert Selection

Fig. 4—Procedure for Phase II: system reliability modeling for 
the target area.
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may bias their opinions by giving a wide distribution on the amount 
of decrease in equipment MTTF operating in the Arctic, which is in 
favor of the study goal. Alternatively, some other experts working 
in the equipment-design field (e.g., manufacturers) may argue that 
the MTTF of an equipment unit operating in the Arctic is statisti-
cally the same as one operating in normal-climate regions. 

Cognitive biases are expressed in various ways, including over-
confidence, anchoring, and availability. Overconfidence occurs 
when an expert has a tendency to be more precise about their prob-
ability estimates, which may consequently result in presenting 
distributions that are too tight. Anchoring occurs when an expert 
anchors to an original estimate that is generally as defensible as 
possible. Such judgements may be formed on the basis of a known 
disaster or failure scenario. Availability refers to a cognitive bias in 
which the frequency of events that are easily imagined or recalled 
are likely to be overestimated, while more-common-failure sce-
narios, with less-significant consequences, can be underestimated. 
These biases can be described for the experts to help them to re-
duce the level of such biases and their resulting uncertainties. Al-
ternatively, the analyst may present the questions in such a way as 
to reduce the structural biases. More-detailed discussion regarding 
the biases and how to deal with them is presented in Meyer and 
Booker (1991).  

Step II-3: Fuzzification of Expert Opinions. Let Tj B,  represent 
the MTTF of component j in the base area. Expert i provides his or 
her subjective opinion on parameter δ, which is the degree of de-
crease in Tj B,  in the form of [δi,L, δi,M, δi,R]. Parameter δ is given as 
a fraction of Tj B,  using 5, 50, and 95% quantiles, respectively, given 
by δi,L, δi,M, and δi,R. In this regard, the MTTF of component j in the 
target area Tj T,  is defined as

T Tj T j B, ,= −( )1 � .  .....................................................................(8)

However, because there is usually more than one expert involved in 
the studies, expert opinions need to be combined to form a solution 
for the analyst or decision maker. Such a solution will be further 
used to modify the MTTF data gathered in the base area. To com-
bine the elicited expert opinions while including the associated un-
certainties, one can describe the quantiles given by each expert in 
the form of a Gaussian fuzzy number � �∆ = ( )  ∈( ){ }∆i i i i

i
� � � �, , ,0 1 . 

The membership function � ��∆ ( )
i

i  is expressed by use of Eq. 1. The 
quantiles given by the experts are used to determine the parameters 
σL and σR in Eq. 1. The detailed procedure to determine such pa-
rameters and to finally fuzzify the quantiles given by the experts is 
presented in Appendix A.

Step II-4: Aggregation of Fuzzified Expert Opinions. Aggrega-
tion of expert opinions refers to the procedure by which the expert 
judgements are combined by the analyst to provide a basis for the 
decision maker. Axiom-based approaches are mathematical aggre-
gation methods that are based mainly on the linear and logarithmic 
opinion-pool principles, of which the former refers to the weighted 
linear combination and the latter refers to the weighted geometric 
combination (Bedford and Cooke 2001; Clemen and Winkler 1999; 
Cooke 1991). Eqs. 9 and 10, respectively, give the weighted linear 
and geometric combination rules in crisp form:

� �=
=
∑wi i
i

N

1

 ................................................................................(9)

and

� �=
=

∏ i
w

i

N
i

1

,  .............................................................................(10)

where δi is the opinion of Expert i, δ is the combined expert opin-
ions in crisp form, N is total number of experts, and wi is the nor-

malized nonnegative weight for Expert i. However, to develop a 
fuzzy relation for these combination rules, the extension principle 
is applied to already fuzzified expert opinions (see Appendix A). 

Various methods are available to assign a weight for each expert, 
such as assigning equal weights; asking experts to weight them-
selves; ranking experts in a specific preference, and then assigning 
weights proportional to ranks; determining weights on the basis of 
the elicited data; using proper scoring rules; and calibrating experts 
on the basis of their performance (Cooke 1991). In this study, the 
equal and experience-based weighting approaches are used.

Step II-5: Developing Fuzzy Failure-Probability Function for 
Components/Subsystems. Substituting Eq. 8 into Eq. 5 gives the 
failure-probability function of a component operating in the target 
area as

F t
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1
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The fuzzified failure-probability function is in fact an extension 
of the failure-probability function from ordinary sets into fuzzy 
sets. In other words, the failure probability of a component until a 
certain time is no longer a crisp value, but a fuzzy number that in-
cludes the uncertainties caused by the vague and complex effects 
of operating conditions on the component reliability performance 
(i.e., parameter δ, the quantiles of which are given by experts), and 
those uncertainties caused by expert judgements. To develop the 
fuzzified failure-probability function of a component, one needs 
to use the fuzzified form of aggregated expert opinions (i.e., Step 
II-3). The detailed description of fuzzy failure probability and its 
membership function is given in Appendix A. 

Step II-6: Performing Fuzzy FTA To Estimate the System-
Failure Probability: The fuzzy FTA can be carried out by substi-
tuting the fuzzy failure probability of each component into the fuzzy 
AND-gate and OR-gate. The corresponding membership functions 
can be determined by applying the extension principle and α-cut 
set concept (see Appendix A). While the failure probability of the 
top event is a crisp value in classical FTA, in fuzzy FTA, the failure 
probability of the top event is a fuzzy number that assigns a mem-
bership grade for different values of failure probability.

Case Study
To illustrate the proposed methodology a three-phase, horizontal 
oil and gas separator system is chosen as a case to estimate its reli-
ability performance under Arctic operating conditions.

Illustration of Phase I. Step I-1: System Identification and 
Description. Fig. 5a shows a typical three-phase gravity-type 
horizontal separator. Wellstream enters the separator, where the 
associated gas and water cut are separated from the oil phase. Gas 
and water leave the separator vessel through pressure-control and 
water-dump valves, respectively. The separated oil is then routed 
to the next-stage separator through the oil-dump valve (Arnold and 
Stewart 2008). Additionally, according to API SPEC 12J (1989), 
some pressure-relief valves are required to be installed on the ves-
sel. On the basis of these descriptions, the simplified separator 
system, its components, and its external boundary are shown in 
Fig. 5b.

Internal boundaries are chosen in such a way that each valve will 
be considered a single component without further analysis of its in-
ternal sections and components, such as actuator, control and moni-
toring devices, seals, seat rings, and valve body. The internal boundary 
for the separator is also defined in such a way that the vessel and all 
of its internal sections, level- and pressure-control devices, and moni-
toring instruments are considered as a single component.

Step I-2: Component-Level Analysis. To perform the com-
ponent-level analysis, the mean-time-to-failure (MTTF) data for 
each component are obtained from the Offshore Reliability Data 
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(OREDA) handbook (OREDA Participants 2009), which includes 
the failure rate and mean time to repair of a wide range of equip-
ment installed on oil and gas production facilities on the Norwe-
gian continental shelf, except the Barents Sea. There are various 
types of failure data reported in the OREDA handbook, such as 
degraded and critical, of which the critical failures “cause imme-
diate and complete loss of an equipment unit’s capability of pro-
viding its output.” The degraded failures “are not critical, but they 
prevent an equipment unit from providing its output within speci-
fications” (OREDA Participants 2009). Therefore, in this study, the 
MTTF data are those related to both the critical and degraded fail-
ures. However, one can also consider only the critical failures in 
the analyses. The probability of failure for each component is esti-
mated by use of Eq. 5 at a reference time of t0 = 2,160 hours (ap-
proximately 3 months). Component reliability is also estimated for 
each component as a function of time, as well as at the reference 
time. Table 1 presents the list of components, their identifications, 
MTTF data, and the reliability and failure probability at the refer-
ence time. It is assumed that all level-control valves have identical 
failure rates. This assumption stands for the pressure-relief and 
pressure-control valves. 

Step I-3: Fault-Tree Construction. To construct the fault-tree 
diagram, it is assumed that if any of the described valves or sep-
arators fail, then the entire separation process fails until the cor-
rective-maintenance tasks restore the failed components to their 
functioning state. On the basis of this assumption, the fault-tree 
diagram can be constructed as shown in Fig. 6.

Step I-4: Estimation of System-Failure Probability. By ap-
plying the concept of minimal cut-sets, the failure-probability func-
tion of the system can be modelled as

F F S LV LV LV PS PVSystem = ∪ ∪ ∪ ∪ ∪( )1 2 3 .  ...................(12)

Performing further simplification with Eq. 7, and substituting 
the corresponding failure probability of each component from 
Table 1, the system-failure probability at time t0 = 2,160 hours 
would be 33.50%, which provides a reliability of 66.50%. Fig. 
7 depicts the reliability of the separator system and its compo-
nents (SEP, LV1, LV2, LV3, PS, and PV) as a function of opera-
tion time. Because the failure of these components is linked to 
system failure by means of an OR-gate, the high failure rate of the 
separator (11 to 20 times more than the failure rate of valves, as 
presented in Table 1) has a major negative effect on the system-
reliability performance. Some measures, such as condition moni-
toring, preventive-maintenance actions, and adding redundancy to 
the system, may be taken into consideration to keep the system re-
liability above a desired level.

Illustration of Phase II. Step II-1: Expert Selection. In this study, 
experts are chosen on the basis of the criteria suggested by Ortiz 
et al. (1991). In this regard, experts collectively should represent a 
wide variety of backgrounds and experience. Referring to the pub-
lications of experts and their direct involvement in or consulting 
and managing of research in the related areas could also be a help-
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Table 1—List of components, their identification, MTTF, and reliability at t0=2,160 hours.
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(OREDA) handbook (OREDA Participants 2009), which includes 
the failure rate and mean time to repair of a wide range of equip-
ment installed on oil and gas production facilities on the Norwe-
gian continental shelf, except the Barents Sea. There are various 
types of failure data reported in the OREDA handbook, such as 
degraded and critical, of which the critical failures “cause imme-
diate and complete loss of an equipment unit’s capability of pro-
viding its output.” The degraded failures “are not critical, but they 
prevent an equipment unit from providing its output within speci-
fications” (OREDA Participants 2009). Therefore, in this study, the 
MTTF data are those related to both the critical and degraded fail-
ures. However, one can also consider only the critical failures in 
the analyses. The probability of failure for each component is esti-
mated by use of Eq. 5 at a reference time of t0 = 2,160 hours (ap-
proximately 3 months). Component reliability is also estimated for 
each component as a function of time, as well as at the reference 
time. Table 1 presents the list of components, their identifications, 
MTTF data, and the reliability and failure probability at the refer-
ence time. It is assumed that all level-control valves have identical 
failure rates. This assumption stands for the pressure-relief and 
pressure-control valves. 

Step I-3: Fault-Tree Construction. To construct the fault-tree 
diagram, it is assumed that if any of the described valves or sep-
arators fail, then the entire separation process fails until the cor-
rective-maintenance tasks restore the failed components to their 
functioning state. On the basis of this assumption, the fault-tree 
diagram can be constructed as shown in Fig. 6.

Step I-4: Estimation of System-Failure Probability. By ap-
plying the concept of minimal cut-sets, the failure-probability func-
tion of the system can be modelled as

F F S LV LV LV PS PVSystem = ∪ ∪ ∪ ∪ ∪( )1 2 3 .  ...................(12)

Performing further simplification with Eq. 7, and substituting 
the corresponding failure probability of each component from 
Table 1, the system-failure probability at time t0 = 2,160 hours 
would be 33.50%, which provides a reliability of 66.50%. Fig. 
7 depicts the reliability of the separator system and its compo-
nents (SEP, LV1, LV2, LV3, PS, and PV) as a function of opera-
tion time. Because the failure of these components is linked to 
system failure by means of an OR-gate, the high failure rate of the 
separator (11 to 20 times more than the failure rate of valves, as 
presented in Table 1) has a major negative effect on the system-
reliability performance. Some measures, such as condition moni-
toring, preventive-maintenance actions, and adding redundancy to 
the system, may be taken into consideration to keep the system re-
liability above a desired level.

Illustration of Phase II. Step II-1: Expert Selection. In this study, 
experts are chosen on the basis of the criteria suggested by Ortiz 
et al. (1991). In this regard, experts collectively should represent a 
wide variety of backgrounds and experience. Referring to the pub-
lications of experts and their direct involvement in or consulting 
and managing of research in the related areas could also be a help-
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experience, which is 40 years. Equal weighting (wi = 0.1667) is 
another approach used in this study, which is one divided by the 
number of experts.

Step II-3: Fuzzification of Expert Opinions. The next step is 
to fuzzify elicited expert opinions, through which the elicited de-
gree of decrease in MTTF [δi,L, δi,M, δi,R] is converted to a Gaussian 
fuzzy number �∆ i. The method to determine the corresponding mem-
bership function for each expert’s data is described in Appendix A. 
The fuzzified expert opinions on parameter δ for both the separator 
and valves are plotted in Figs. 8a and 8b, respectively. As can be 
seen, according to the 5, 50, and 95% quantiles of the data given 
by Expert 3, the MTTF of the separator in the target area may de-
crease by (50, 62.5, 75%). However, on the basis of the member-
ship function of the corresponding fuzzy number, the reduction in 
MTTF may be as high as 81%, or as low as 43.9%, but with a mem-
bership degree of 0.05.

Step II-4: Aggregation of Fuzzified Expert Opinions. The fuzz-
ified expert opinions are then combined by use of Eqs. 9 and 10 ac-
cording to the weights assigned for each expert. For this purpose, 
four approaches are used in this study, as presented in Table 3. 
Fig. 9 shows the combined fuzzy expert opinions by use of these 
four approaches. For instance, if one chooses arithmetic averaging 
and determines each expert’s weight on the basis of their working 
experience (i.e., Approach II), the MTTF of the separator in the 
target area will be 35.2% smaller than in the base area. However, 
this degree of decrease is obtained if one chooses the membership 
grade of unity. The reduction in MTTF of the separator would be as 
large as 51%, but with a membership grade of 0.05. 

Step II-5: Developing Fuzzy Failure-Probability Function for 
the Components/Subsystems. Having the changes in the MTTF of 
the separator and valves estimated, one can predict the reliability 
or failure probability of those components as a function of time. 
For example, Fig. 10a illustrates the separator reliability at t0 = 
2,160 hours in both the base and target areas. As shown in this 
figure, after 2,160 hours, separator reliability reduces to 74.17% in 
the base area. This reduction is considerably larger in the target area 
because of the adverse effects of Arctic operating conditions on 
separator performance. Additionally, as can be seen, four different 
approaches estimate different reductions in separator reliability, of 
which the greatest and the least reductions are estimated by Ap-
proaches II and IV, respectively. By use of the same procedure, the 

ful basis for expert selection. In this study, the key point in expert 
selection is that they must have adequate understanding of Arctic 
operating conditions and their potential effects on the performance 
of mechanical systems. Considering these criteria, six experts are 
chosen from Norwegian academic and industrial sectors, each with 
appropriate knowledge of the operating conditions in the North 
Sea (i.e., the base area) and the Barents Sea (i.e., the target area). 
Selected experts have expertise in maintenance and reliability en-
gineering, process engineering, mechanical engineering, and cold-
climate engineering, with an experience ranging from 7 to 40 years. 

The authors selected these experts on the basis of the available 
resources at the time of the study. Additionally, because the primary 
goal of this study is to propose the methodology and highlight the 
necessity of including Arctic operating conditions in system-relia-
bility assessments, the authors decided to perform the analyses on 
the basis of the opinions of these selected experts, and to not exclude 
the experts with the working experience of 7 and 9 years. However, 
those two experts will receive a lower weight compared with those 
having more working experience. The results of this study may not 
be considered universal because they depend on the expert-selection 
criteria, number of experts, and varying operating conditions. There-
fore, other studies may develop their own expert-selection schemes 
and achieve different results. A detailed discussion on selection and 
motivating experts is presented by Meyer and Booker (1991). 

Step II-2: Expert-Opinion Elicitation. At the next step, a ques-
tionnaire is prepared during which experts are informed about the 
operating environment in the base and target areas, as well as the 
MTTF of valves and three-phase horizontal separator. Experts are 
then asked to provide their subjective opinions on the degree of 
decrease in such MTTFs, considering that the described equip-
ment is planned to operate in the target area. The Johan Castberg 
field, which is located 230 km north of the Norwegian coast in 
the Barents Sea, is selected as the target area. The operating con-
ditions in this region are much more severe compared with the 
southern regions of the Norwegian continental shelf, such as the 
North Sea. The questionnaire used in this study for the expert-elic-
itation step is presented in Appendix B. Table 2 presents the elic-
ited expert opinions, their working experience in years, and both 
the nonnormalized and normalized experience-based weights for 
the experts that will be further used for combining expert opinions. 
Nonnormalized weights are determined by dividing the working 
experience of each expert (in years) by the maximum working 
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reliability of pressure- and level-control valves can be described in 
fuzzy form, as well. 

Step II-6: Performing Fuzzy Fault-Tree Analysis (FTA) To Es-
timate the System-Failure Probability. Once component reliabili-
ties (or failure probabilities) are estimated, system performance can 
be analyzed by use of the fuzzified form of Eq. 12 (see Appendix 
A). Fig. 10b shows the fuzzy form of system reliability at time t0 
= 2,160 hours. As can be seen, the system reliability in the base 
area is 66.50%. Taking into account the effects of operating condi-
tions in the target area on system performance, this reliability con-
tinues to decrease, as illustrated by Approaches I through IV. For 
instance, considering Approach II and membership grades of unity 
and 0.05, system reliability reduces to 53.58 and 43.53%, respec-
tively. Choosing a specific membership grade and its corresponding 
system reliability depends on the aim of the study, requirements and 
regulations, and the risk perception of the decision maker. However, 
according to the fuzzy set theory, the higher the membership grade, 
the more the element belongs to the set. One may also defuzzify the 
results to obtain the corresponding crisp values.

In addition to the system reliability at a specified time, the pro-
posed methodology is also applicable to developing the system 
reliability as a function of operation time. Fig. 11 illustrates the 

system reliability in the base and target areas on the basis of four 
approaches and taking a membership degree of unity. Among the 
introduced approaches, Approaches II and III estimate the greatest 
and the least reduction in system reliability, respectively. However, 
it must be noted that these results are not universal because they 
may differ on the basis of various expert opinions, varying oper-
ating conditions, operation location, system production rate, type 
of wellstream, and available inspection and maintenance activities.

Conclusion
This study focuses on the application of expert judgement in reli-
ability prediction of oil and gas topside facilities in Arctic regions, 
where adequate life data may not be available. The proposed meth-
odology can be used in the design phase for oil and gas operations 
in the Arctic. The estimated reduction in reliability performance of 
the equipment can be used for optimizing maintenance and spare-
parts provision plans. Moreover, this methodology provides a basis 
for deciding the measures of winterization that need to be applied 
if the system reliability is below the acceptable level. Additionally, 
as illustrated in this study, fuzzy set theory can be used to aggregate 
expert opinions, while including and modeling the uncertainties 
and their propagation in system analysis. The estimation made by 
the presented methodology may need to be further modified when-
ever new historical or laboratory life data are available.

The life data for reliability analysis in the base area are obtained 
from the OREDA handbook (OREDA Participants 2009), which 
provides only the constant failure rate of the equipment. Thus, ex-
ponential distribution is the only applicable probability-density 
function to estimate component reliabilities. Use of detailed life 
data from maintenance reports can lead to more-dependable reli-
ability analysis. 

The number of selected experts is also a determining factor in 
the reliability of the results. Such experts must have adequate un-
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reliability of pressure- and level-control valves can be described in 
fuzzy form, as well. 

Step II-6: Performing Fuzzy Fault-Tree Analysis (FTA) To Es-
timate the System-Failure Probability. Once component reliabili-
ties (or failure probabilities) are estimated, system performance can 
be analyzed by use of the fuzzified form of Eq. 12 (see Appendix 
A). Fig. 10b shows the fuzzy form of system reliability at time t0 
= 2,160 hours. As can be seen, the system reliability in the base 
area is 66.50%. Taking into account the effects of operating condi-
tions in the target area on system performance, this reliability con-
tinues to decrease, as illustrated by Approaches I through IV. For 
instance, considering Approach II and membership grades of unity 
and 0.05, system reliability reduces to 53.58 and 43.53%, respec-
tively. Choosing a specific membership grade and its corresponding 
system reliability depends on the aim of the study, requirements and 
regulations, and the risk perception of the decision maker. However, 
according to the fuzzy set theory, the higher the membership grade, 
the more the element belongs to the set. One may also defuzzify the 
results to obtain the corresponding crisp values.

In addition to the system reliability at a specified time, the pro-
posed methodology is also applicable to developing the system 
reliability as a function of operation time. Fig. 11 illustrates the 

system reliability in the base and target areas on the basis of four 
approaches and taking a membership degree of unity. Among the 
introduced approaches, Approaches II and III estimate the greatest 
and the least reduction in system reliability, respectively. However, 
it must be noted that these results are not universal because they 
may differ on the basis of various expert opinions, varying oper-
ating conditions, operation location, system production rate, type 
of wellstream, and available inspection and maintenance activities.

Conclusion
This study focuses on the application of expert judgement in reli-
ability prediction of oil and gas topside facilities in Arctic regions, 
where adequate life data may not be available. The proposed meth-
odology can be used in the design phase for oil and gas operations 
in the Arctic. The estimated reduction in reliability performance of 
the equipment can be used for optimizing maintenance and spare-
parts provision plans. Moreover, this methodology provides a basis 
for deciding the measures of winterization that need to be applied 
if the system reliability is below the acceptable level. Additionally, 
as illustrated in this study, fuzzy set theory can be used to aggregate 
expert opinions, while including and modeling the uncertainties 
and their propagation in system analysis. The estimation made by 
the presented methodology may need to be further modified when-
ever new historical or laboratory life data are available.

The life data for reliability analysis in the base area are obtained 
from the OREDA handbook (OREDA Participants 2009), which 
provides only the constant failure rate of the equipment. Thus, ex-
ponential distribution is the only applicable probability-density 
function to estimate component reliabilities. Use of detailed life 
data from maintenance reports can lead to more-dependable reli-
ability analysis. 

The number of selected experts is also a determining factor in 
the reliability of the results. Such experts must have adequate un-
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derstanding of the failure mechanisms of various components and 
the effects of Arctic operating conditions on such mechanisms. The 
use of equal weights for experts may not seem realistic because 
one may argue various experts have different levels of expertise 
and thus should receive different weighting factors. In this regard, 
other weighting methods that can calibrate expert opinions may 
be more useful. Additionally, within the elicitation step, questions 
may be asked in different forms to ensure the consistency of expert 
opinions. Although one needs to establish a series of criteria for 
expert selection, expert selection remains a major issue in any ex-
pert-judgement process because understanding and quantifying the 
competence level of each expert are quite challenging tasks. 

Nomenclature
 f(x) = probability-density function
 F(x) = failure probability or unreliability function
 Fj = failure probability of component j
 N = total number of experts
 R(x) = reliability function
 Tj B,  = mean time to failure (MTTF) of component j in the base 

area
 Tj T,  = MTTF of component j in the target area
 wi = normalized weight for Expert i
 x = element of Gaussian fuzzy number �X
 xM = mean value of Gaussian fuzzy number �X
 �X  = Gaussian fuzzy number
 Xα = α-cut set of Gaussian fuzzy number �X
 XαL = lower bound of the α-cut set of Gaussian fuzzy number �X
 XαR = upper bound of the α-cut set of Gaussian fuzzy number �X
 δ = combined expert opinions in crisp form; element of the 

Gaussian fuzzy number �∆

 δi = degree of decrease in MTTF of a component elicited from 
Expert i; element of the fuzzy number �∆ i

 δi,L = 5% quantile of the parameter δ elicited from Expert i
 δi,M = 50% quantile of the parameter δ elicited from Expert i
 δi,R = 95% quantile of the parameter δ elicited from Expert i
 δi,αL

 = lower bound of the α-cut set of Gaussian fuzzy  
number �∆ i

 δi,αR
 = upper bound of the α-cut set of Gaussian fuzzy  

number �∆ i

 δj = combined crisp expert opinion on the reduction in MTTF 
of component j; element of the fuzzy number �∆ j

 δM = mean value of the combined fuzzified expert opinions
 �∆ = combined fuzzified expert opinions
 Δα = α-cut set of Gaussian fuzzy number �∆
 �∆ i = Gaussian fuzzy number representing the quantiles given 

by Expert i
 �∆ i,�  = α-cut set of Gaussian fuzzy number �∆ i

 �∆ j  = combined fuzzified expert opinions on the reduction in 
MTTF of component j

 Δj,α = α-cut set of Gaussian fuzzy number �∆ j

 λ = failure rate
 � �X x( ) = membership function of Gaussian fuzzy number �X
 σL = left-side standard deviation of a Gaussian fuzzy number
 σR = right-side standard deviation of a Gaussian fuzzy number
 �� j = fuzzified failure probability of component j
 �� j ,� = α-cut set of Gaussian fuzzy number �� j
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Appendix A
Gaussian Fuzzy Form of δ. Let the value of parameter δ be given 
by Expert i in the form of [δi,L, δi,M, δi,R], where δi,L, δi,M, and δi,R are 
5, 50, and 95% quantiles, respectively. To fuzzify the parameter δ  
with a Gaussian fuzzy number, one needs to determine the standard 
deviations of the normal distributions corresponding to the elicited 
quantiles. This can be achieved by solving the cumulative density 
function of a normal distribution for σi,L and σi,R, as given by
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To write the Gaussian membership function with the α-cut set 
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i
� � � �, , ,0 1  can be ob-

tained by use of Eq. 1, as

� �
� � � � �

�∆ ( ) =
− −( ) ( )



 <

i

i M i Lexp /, ,

2 22 , for ii M

i M i R i M

,

, , ,exp /− −( ) ( )



 ≥



� � � � �
2 22 , for







.  ........... (A-2)

To write the Gaussian membership function with the α-cut set 
concept ∆ = ( )i i iL R, , ,,� � �� � , one can equate the membership function 
� ��∆ ( )

i
 with α, and solve the resulting equation for δ, as given by

� � � �

� � � �

�

�

i i M i L

i i M i R

L

R

, , ,

, , ,

ln

ln

= − −

= + −

 2

2

2

2




.  ................................................ (A-3)
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To combine the fuzzified expert data by use of the arithmetic 
and geometric averaging rules, the following equations can be 
used, respectively:

� �∆ = ∆
=
∑wi i
i

N

1

 ......................................................................... (A-4)

and

� �∆ = ∆
=

∏ i
w

i

N
i

1

,  ........................................................................ (A-5)

where �∆ i is fuzzified opinion of Expert i, �∆ is the combined ex-
pert opinions in fuzzy form, N is the total number of experts, 
and wi is the normalized nonnegative weight for Expert i. The 
membership function of the combined fuzzified expert data 
�

�∆ = ( )  ∈( ){ }∆� � � �, , ,0 1  is then obtained with the extension prin-
ciple and α-cut set concept, given by

∆ = ∆ = ∈( ) = ∈∆










=
∑� � �� � � �w wi i i i i
i

N

i
i

, ,, ,0 1
1==

∑
1

N

 ................ (A-6)

and

∆ = ∆ = ∈( ) = ∈∆










=
∏� � �� � � �i

w
i
w

i i
i

N

i

i i
, ,, ,0 1

1==
∏

1

N

,  ................. (A-7)

where Δi,α is the α-cut set of the fuzzy number �∆ i .

Fuzzified Failure Probability and Fuzzy FTA. Once the fuzzi-
fied expert opinions on the amount of decrease in the mean time to 
failure of component j are combined, the failure-probability func-
tion of that component can be expressed in fuzzy form by

�
�� j

j j B

t

T
= − −

− ∆( )












1
1

exp
,

,  ............................................ (A-8)

where its membership function is obtained by use of the extension 
principle and the α-cut set concept as

� j

j j B

t

T
,

, ,

exp�

�

= − −
− ∆( )













1
1

= ∈( ) = − −
−( )













∈∆F F
t

T
j j

j j B

j j0 1 1
1

, exp ,
,�

� ,,�












.  ........ (A-9)

To perform the fault-tree analysis on the basis of the fuzzy set 
theory, the failure probability of each component must be fuzzified 
with Eqs. A-8 and A-9. The top-event probability of the fault tree 
will be further estimated by fuzzifying the AND-gate and OR-gate 
probabilities, as given by

� � �� � �AND-Gate = 1 2 ............................................................... (A-10)

and

� � � � �� � � � �OR-Gate = + −1 2 1 2, .............................................. (A-11)

where �� j j, ,= 1 2 is the fuzzy failure probability of component j. 
The membership functions of ��AND-Gate and ��OR-Gate can be obtained 
by use of the extension principle and the α-cut set concept:

� � �AND-Gate,� � �= 1 2, ,

= ∈( ) = ∈ ∈ F F F F F F0 1 1 2 1 1 2 2, , ,, ,� �� � ....... (A-12)

� � � � �OR-Gate,� � � � �= + −1 2 1 2, , , ,

= ∈( ) = + − ∈ ∈ F F F F F F F F0 1 1 2 1 2 1 1 2 2, , ,, ,� �� �

 .......................................... (A-13)

Appendix B
See Table B-1 for the questionnaire used to elicit expert opinions.

Masoud Naseri is a PhD-degree student in the Department of Safety 
and Engineering at the University of Tromsø—The Arctic University of 
Norway. His research interests include cold-climate engineering, risk 
and safety analysis of Arctic offshore operations, operation and mainte-
nance, and analytical and simulation methods in reliability, availability, 
and maintainability analysis of oil and gas facilities. Naseri has au-
thored or coauthored eight technical papers presented in international 
conferences or published in journals. He holds BSc and MSc degrees 
in petroleum engineering from the Petroleum University of Technology 
and Sahand University of Technology, respectively. Naseri is a member 
of SPE. 

Table B-1—The questionnaire used for eliciting expert opinions.
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of Safety and Engineering at the University of Tromsø—The Arctic Univer-
sity of Norway. He has worked for more than 5 years as a lecturer at Azad 
University of Shahrood, Iran. Barabady’s research interests include reliability 
and risk analysis, operation and maintenance engineering and planning, 
and production-assurance analysis and management. He has authored or 

coauthored 29 technical papers presented in international conferences or 
published in journals. Barabady holds a PhD degree in operation and main-
tenance engineering from Luleå University of Technology, Luleå, Sweden; a 
master’s degree in mining engineering from the University of Tehran, Iran; 
and a bachelor’s degree in mining engineering form Azad University of 
Shahrood, Iran.


