Knudsen-Like Scaling May Be Inappropriate for Gas Shales

The author writes that the generally accepted Knudsen diffusion in shales is based on a mistranslation of the flow physics and may give theoretically unsound predictions of the increased permeability of shales to gas flow. This increase of permeability comes from the micropores, fine-scale microfractures, and cracks. The nanopores in shales provide gas storage by sorption and capillary condensation of heavier gas components. In the smallest nanopores, even methane molecules are increasingly ordered and resemble liquid more than gas. These nanopores feed the macroscopic flow paths in ways that are not captured well by generally accepted equations.
Introduction
For gas pressures below 1 bar, gas permeability can exceed that of liquid substantially. Size distribution of a single pore is a distribution of radii of the largest spheres that can be fitted at each point along this pore. “Pore size” or “pore-body radius” is the radius of maximum sphere that can be inscribed into a pore, while “pore throat” refers to the radius of a minimum inscribed sphere common to two adjacent pores. In slit-like pores, pore throats and bodies are the same and pore widths are often reported to account for gas sorption. Pore sizes—whatever this term means to different authors—in the crushed samples of mudrocks are often inferred from small-angle and ultrasmall-angle neutron scattering, multistage desorption measurements, and molecular or statistical physics calculations; these sizes are not directly measured. A specific definition of pore size is provided in the complete paper.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT
Knudsen-Like Scaling May Be Inappropriate for Gas Shales
01 September 2018
Saltwater Disposal Optimization Drives Water Midstream Sector
Operators of unconventional plays face a conundrum—how to dispose of produced water economically without risking seismicity or aquifer contamination. A recent paper and virtual forum offer ideas for optimizing saltwater disposal.
Shell Launches Innovation Studio
A new open innovation studio aims to use crowdsourcing to redefine the future of oil and gas exploration.
New Fracture Diagnostic Test Delivers Tight Reservoir Data in 2 Hours or Less, Bolsters Future of Engineered Completions
Unconventional producers around the world have been hamstrung by expensive and cumbersome options when it comes to obtaining reservoir data. Among the latest ways to break past these barriers is a new method developed by Canadian researchers and field tested in Australia’s unconventional frontier.
ADVERTISEMENT
STAY CONNECTED
Don't miss out on the latest technology delivered to your email weekly. Sign up for the JPT newsletter. If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT