Unconventional/complex reservoirs

Coupled Capillary-Pressure and Three-Phase Flash Models Simulate Liquid Blockage

This paper presents a new approach for more-accurate modeling of liquid blockage in tight oil and gas reservoirs and investigates the use of solvents for blockage removal.

jpt-2018-10-190242heroto.jpg

Water and condensate blockage near production wells in unconventional reservoirs can reduce oil- and gas-production rates significantly. This paper presents a new approach for more-accurate modeling of liquid blockage in tight oil and gas reservoirs and investigates the use of solvents for blockage removal.

Introduction

In this paper, coupled three-phase flash and capillary-pressure models are presented for simulation of tight oil and gas reservoirs. The capillary pressure between each phase pair (e.g., oil/gas or oil/aqueous) is calculated with a general three-phase capillary-pressure model that integrates the effect of important petrophysical properties including pore-size distribution, phase saturations, and different wettability conditions. The capillary-pressure function is integrated with three-phase flash calculations to define the equilibrium state between oil, gas, and aqueous phases under reservoir conditions.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.