Reservoir

Integrated Approach Improves Modeling of Rejuvenation in Unconventional Plays

An integrated understanding of geomechanical effects, fracture propagation, and reservoir dynamics is critical in the efficient and cost-effective application of rejuvenation technologies for unconventional plays.

jpt-2019-07-191457hero.jpg

An integrated understanding of geomechanical effects, fracture propagation, and reservoir dynamics is critical in the efficient and cost-effective application of rejuvenation technologies for unconventional plays. While various reservoir models depicting the hydraulic-fracturing process are available in the industry, many tend to be simplified or do not capture the numerous parameters that affect both the initial and restimulation processes. This work takes a further step toward building a more-realistic picture of fracturing in unconventional plays.

Introduction

A common assumption in reservoir simulation is that the proppant-fluid mixture is present in the hydraulic fracture before flowback and production. The quantity of water assumed to be present in the hydraulic fractures is a conjecture and is calibrated generally with production-logging tools.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.