ADVERTISEMENT

Gamma-Ray-Tool Characterization Avoids Traditional Limitations

A major issue with gamma-ray (GR) logs is that the API definition is valid only if the tool is run in a 4.89‑in. borehole filled with fresh water. Although all GR tools are intended to provide the same results for such a well, in the field there is no single one-size-fits-all concept. In this paper, the authors discuss the characterization process for GR tools and how they behave in boreholes different from the one used in the University of Houston (UH) GR characterization pit. Proposals for developing correction strategies so that GR logs become quantitative logs, rather than the qualitative logs of the past, also are outlined.

Introduction

One of the issues inherent in ensuring repeatability of GR logs starts with tool characterization. For decades, no common industry standard existed that defined the scale for measuring radioactivity. The chaos created by different tools providing radioactivity in different units in the same environments ended with the creation of the API unit in 1959. The definition of the unit was based on work done with the UH GR characterization pit. This specific pit has a 4.89-in. borehole and a casing to ensure stability within the surrounding synthetic formation.

One downside of the API definition is that different combinations of radioactive isotopes, environmental conditions, and tool designs may yield comparable count rates. UH GR pit characterizations of GR tools lose their validity as the wellbore diverges from this previously described specific borehole size and environment. Thus, environmental corrections are needed to bring readings to a reference borehole used for tool characterization.

Another issue with the UH GR-pit-based characterizations became evident with the emergence of logging-while-drilling (LWD) GR tools. The LWD tools were supposed to provide natural GR values comparable with those of wireline tools. Recommended practices for wireline tools did not have a provision for calibration of LWD GR tools that did not fit into the UH GR pit. Consequently, characterizations of LWD tools to provide results comparable with those of wireline tools became a topic of interest.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 191717, “Is API Enough for Gamma Ray Logs, or Do We Need More?” by Feyzi Inanc, SPE, and Andreas Vogt, SPE, Baker Hughes, a GE Company, prepared for the 2018 SPE Annual Technical Conference and Exhibition, Dallas, 24–26 September. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Gamma-Ray-Tool Characterization Avoids Traditional Limitations

01 August 2019

Volume: 71 | Issue: 8

No editorial available

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

No editorial available

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT