ADVERTISEMENT

Chemical Tracer Flowback Data Help Understanding of Fluid Distribution

This paper presents a data set involving the pumping of multiple, unique chemical tracers into a single Wolfcamp B fracture stage. The goal of the tracer test is to improve understanding of the flowback characteristics of individually tagged fluid and sand segments by adding another layer of granularity to a typical tracer-flowback report. The added intrastage-level detail can provide insights into fracture behavior in shale-reservoir stimulation by looking at individual fluid-segment tracer recoveries.

Introduction

Operators have relied upon high-­intensity completion designs that include a combination of high proppant volumes, increased perforation-cluster density, and smaller-mesh-size proppants. These designs aim to create a complex fracture network and increase the contact area with shale rock. They have helped operators achieve higher initial productivity and larger estimated ultimate recovery while simultaneously enabling the drilling of horizontal wells at tighter well spacing. The traditional, biwing fracture model seems to be scrutinized increasingly for its lack of relevance when stimulating shale reservoirs. Operators have observed greater fracture complexity when using enhanced completion designs. These designs aim to increase fracture surface area and complexity, leading to a debate regarding the merits of stimulated reservoir volume (SRV) and propped-stimulated reservoir volume, also known as effective propped volume (EPV).

SRV, estimated usually from microseismic mapping, is a rough estimate of the volume of rock that is hydraulically fractured, and is sometimes defined as the product of gross stimulated area and pay-zone thickness. EPV is a fraction of the total SRV that is supported by proppant and is capable of flowing during depletion. From a production perspective, the surface-area contact of the fractional propped SRV is more important than the gross SRV estimate.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 194362, “Understanding Fracturing-Fluid Distribution of an Individual Fracturing Stage From Chemical Tracer Flowback Data,” by Wei Tian and Alex Darnley, SPE, ResMetrics; Teddy Mohle, SPE, and Kyle Johns, Contango Oil and Gas; and Chris Dempsey, ResMetrics, prepared for the 2019 SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, 5–7 February. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Chemical Tracer Flowback Data Help Understanding of Fluid Distribution

01 September 2019

Volume: 71 | Issue: 9

No editorial available

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT