ADVERTISEMENT

Capacitance-Resistance Model Used for Integrated Detection of Water Production

The Gaither Draw unit is a heterogeneous tight formation with an average permeability of less than 0.1 md. After substantial water injection, there was no clear benefit of injected water for any producer. However, knowing the distribution of the injected water is critical for future well planning and quantification of injection efficiency. The objective of this study is to show how the capacitance-resistance model (CRM) was used on this field and how it validated the use of other independent methods. This paper demonstrates that integration of different sources of data in reservoir management is critical.

Introduction

Unlike numerical reservoir simulation, the CRM requires only the injection rates of each injector and the production rates of each producer as input to evaluate reservoir performance. The connectivity and the time constant that are estimated by fitting production rates can provide useful information about geological features and reservoir heterogeneity. With a clear understanding of reservoir heterogeneity, flow barriers and high-permeability zones can be identified. Significant reservoir heterogeneity may lead to poor sweep efficiency. These characteristic features make the CRM (the development of which is outlined in the complete paper) a unique and practical tool to investigate waterflooding projects.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper IPTC 19333, “Integrated Detection of Water Production in a Highly Heterogeneous and Tight Formation Using a CRM Model: A Case Study on Waterflooding Gaither Draw Unit, Wyoming, USA,” by Kailei Liu, China University of Geosciences; Xingru Wu, SPE, University of Oklahoma; and Kegang Ling, University of North Dakota, prepared for the 2019 International Petroleum Technology Conference, Beijing, 26–28 March. The paper has not been peer reviewed. Copyright 2019 International Petroleum Technology Conference. Reproduced by permission.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Capacitance-Resistance Model Used for Integrated Detection of Water Production

01 January 2020

Volume: 72 | Issue: 1

No editorial available

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT