ADVERTISEMENT

New Modeling and Simulation Techniques Optimize Completion Design and Well Spacing

Proper lateral and vertical well spacing is critical for efficient development of unconventional reservoirs. Much research has focused on lateral well spacing but little on vertical spacing, which is challenging for stacked-bench plays such as the Permian Basin. Following a previous, successful single-well study in paper SPE 189855, the authors have performed a seven-well case study in which the latest complex fracture modeling and reservoir-simulation technologies have been applied. This synopsis will concentrate on the methodology behind the study; the reader is encouraged to view the complete paper for specific comparisons of completion designs.

Introduction

Complex-fracture-modeling tools are used frequently to study well spacing. Most research has focused on lateral well spacing rather than on vertical spacing, though the industry has seen many fracturing hits and hydraulic communications between wellbores placed vertically in stacked plays.

Field pilot tests have been used extensively to test and optimize lateral and vertical well spacings and to optimize well-completion designs. These pilot tests, however, take considerable time to implement and are very expensive.

In this multiple-well study, the authors used an established work flow to study the fracture interaction between wellbores and lateral and vertical well spacings. A calibrated model was then used to optimize well-completion designs for the Wolfcamp formation.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 194367, “Optimize Completion Design and Well Spacing With the Latest Complex Fracture Modeling and Reservoir-Simulation Technologies—A Permian Basin Case Study With Seven Wells,” by Hongjie Xiong, SPE, and Songxia Liu, University Lands, and Feng Feng, SPE, Texas A&M University, et al., prepared for the 2019 SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, 5–7 February. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

New Modeling and Simulation Techniques Optimize Completion Design and Well Spacing

01 April 2020

Volume: 72 | Issue: 4

No editorial available

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT