ADVERTISEMENT

Multilevel Strategies Improve History Matching of Complex Reservoir Models

The complete paper explores the use of multilevel derivative-free optimization for history matching, with model properties described using principal component analysis (PCA) -based parameterization techniques. The parameterizations applied are optimization-based PCA (O-PCA) and convolutional-neural-network-based PCA (CNN-PCA). Mesh adaptive direct search (MADS), a pattern search method that parallelizes naturally, is used for the optimizations required to generate posterior models. The use of PCA-based parameterization reduces considerably the number of variables that must be determined during history matching, but the optimization problem can still be computationally demanding. The multilevel strategy addresses this issue by reducing the number of simulations that must be performed at each MADS iteration. History-matching results demonstrate that substantial uncertainty reduction is achieved in all cases considered and that the multilevel strategy is effective in reducing the number of simulations required.

Overview

Parameterization has two key advantages in history matching:

  • Far fewer parameters must be determined, which simplifies greatly the minimization in some cases.
  • Posterior (history-matched) geomodels will be consistent with the geological scenario or training image for which the parameterization was constructed.

PCA is the foundation for many geological-dimension-reduction parameterization methods. PCA is based on the eigen-decomposition of the prior geomodel covariance matrix and, thus, honors only two-point spatial statistics.

History-matching algorithms largely can be classified as either optimization-based or ensemble-based procedures. Optimization-based algorithms generate one history-matched model at a time, while ensemble-based algorithms update a large set of models simultaneously. The resulting ensemble of posterior models is used to quantify uncertainty. In this study, only optimization-based history matching is considered, though the parameterizations applied also can be used with ensemble-based methods.

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 193895, “Multilevel Strategies and Geological Parameterizations for History Matching Complex Reservoir Models,” by Yimin Liu, SPE, and Louis J. Durlofsky, SPE, Stanford University, prepared for the 2019 SPE Reservoir Simulation Conference, Galveston, Texas, 10–11 April. The paper has not been peer reviewed.
...
This article is reserved for SPE members and JPT subscribers.
If you would like to continue reading,
please Sign In, JOIN SPE or Subscribe to JPT

Multilevel Strategies Improve History Matching of Complex Reservoir Models

01 April 2020

Volume: 72 | Issue: 4

No editorial available

ADVERTISEMENT


STAY CONNECTED

Don't miss out on the latest technology delivered to your email weekly.  Sign up for the JPT newsletter.  If you are not logged in, you will receive a confirmation email that you will need to click on to confirm you want to receive the newsletter.

 

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT

ADVERTISEMENT