Oilfield chemistry

Future of Nonmetallic Composite Materials in Downhole Applications

The complete paper highlights examples of nonmetallic materials selection and qualification for upstream water-injection and producer and hydrocarbon wells and presents suggestions for future progress.

jpt-2020-07-198572-hero.jpg

Nonmetallic (NM) composite-based materials offer distinct advantages in overcoming the effects of corrosion, scale, and friction on carbon steel to minimize frequent workovers and extend the life cycle of critical downhole products. However, high initial cost and technical-skills limitations pose challenges to more-widespread development and deployment of these materials downhole, particularly in extended-reach drilling and other challenging wells. The complete paper highlights examples of nonmetallic materials selection and qualification for upstream water-injection and producer and hydrocarbon wells and presents suggestions for future progress.

Introduction

Carbon steel (CS) is the material of choice for downhole applications because of its advantages over other materials in terms of cost, temperature and pressure ratings, and field-construction-support services. The downsides of CS include corrosion, scale, and friction that can result in high repair and workover costs and limitations of equipment life.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.