Production

Glass-Reinforced Epoxy Effective Alternative to Alloys in Gas Wells

The complete paper describes an operator’s experience in confirming glass fiber-reinforced epoxy (GRE) as an effective alternative to high-grade corrosion-resistant alloys (CRA) to extend tubing life in high-velocity gas wells.

jpt-2020-07-19696-hero.jpg

The complete paper describes an operator’s experience in confirming glass fiber-reinforced epoxy (GRE) as an effective alternative to high-grade corrosion-resistant alloys (CRA) to extend tubing life in high-velocity gas wells. Laboratory testing and applications in several fields, both on and offshore, and in oil-production and water-injection wells and surface-gathering lines, demonstrate that, when used within the operating limits, GRE can extend tubing life and provide life-cycle cost savings.

GRE

The material has been intensively tested in the past to determine characteristics and capabilities. Mechanical properties, fatigue resistance, chemical compatibilities, connection properties, and abrasion trials have been proved by specific laboratory tests and field trials, demonstrating that GRE can be applied inside production tubing strings. API RP15CLT, first issued in 2007, provides guidelines for the design, manufacture, qualification, and application of composite-lined carbon-steel downhole tubing in the handling and transport of multiphase fluids, hydrocarbon gases, hydrocarbon liquids, and water.

Carbon steel guarantees the system’s mechanical resistance, and the internal GRE liner ensures corrosion resistance.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.