Reservoir characterization

Three-Phase Flow in Fractured Porous Media: Investigation of Matrix/Fracture Interactions

The authors present the results of a detailed experimental study in which underlying pore-level-displacement physics of two- and three-phase flow in a fractured rock sample is investigated with high-resolution X-ray microtomography techniques.

jpt-2017-09-181891fc-hero.jpg

The authors present the results of a detailed experimental study in which underlying pore-level-displacement physics of two- and three-phase flow in a fractured rock sample is investigated with high-resolution X-ray microtomography techniques. A unique, three-phase coreflooding setup integrated with a microcomputed-tomography (micro-CT) scanner is used to conduct flow experiments on a miniature, partially fractured sandstone sample to shed light on subtle displacement mechanisms governing matrix/fracture interactions in the presence or absence of spreading oil layers.

Experimental Methodology

Rock and Fluid Properties. A water-wet Berea sandstone core plug, 38 mm in diameter and 100 mm in length, was subjected to continuous, nonuniform stress to create a fracture parallel to the stress axis. The artificial fracture was induced such that it ran through only half of the core plug.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.