Reservoir simulation

A New Three-Phase Microemulsion Relative Permeability Model

The complete paper presents a new three-phase relative permeability model for use in chemical-flooding simulators.

jpt-2018-01-187369-hero.jpg

The complete paper presents a new three-phase relative permeability model for use in chemical-flooding simulators. A model that has been widely used in chemical-flooding simulators for decades has numerical discontinuities that are not physical in nature and that can lead to oscillations in the numerical simulations. The proposed model is simpler, has fewer parameters, and requires fewer experimental data to determine the relative permeability parameters compared with the original model.

Background

Two- and three-phase relative permeability measurements at low interfacial tension (IFT) have been published previously, and microemulsion relative permeability models have been proposed in the literature as well. But none of these can model the microemulsion phase across different phase-behavior environments, from oil-in-water, to the middle phase, to water-in-oil emulsions.

×
SPE_logo_CMYK_trans_sm.png
Continue Reading with SPE Membership
SPE Members: Please sign in at the top of the page for access to this member-exclusive content. If you are not a member and you find JPT content valuable, we encourage you to become a part of the SPE member community to gain full access.